分布式计算是利用多台计算机协同工作来解决大规模计算问题的技术。以下是Linux环境下使用Python实现分布式计算的几种主要方法:
pip install mpi4py
from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
if rank == 0:
data = {'a': 7, 'b': 3.14}
comm.send(data, dest=1, tag=11)
elif rank == 1:
data = comm.recv(source=0, tag=11)
运行命令: mpiexec -n 4 python script.py
pip install celery
# tasks.py
from celery import Celery
app = Celery('tasks', broker='pyamqp://guest@localhost//')
@app.task
def add(x, y):
return x + y
启动worker: celery -A tasks worker --loglevel=info
pip install dask distributed
from dask import delayed
@delayed
def square(x):
return x ** 2
results = [square(i) for i in range(10)]
total = sum(results)
total.compute()
启动分布式集群: dask-scheduler
和 dask-worker scheduler-address:8786
pip install Pyro4
# 服务器端
import Pyro4
@Pyro4.expose
class Calculator(object):
def add(self, a, b):
return a + b
daemon = Pyro4.Daemon()
uri = daemon.register(Calculator)
print("URI:", uri)
daemon.requestLoop()
# 客户端
import Pyro4
uri = input("输入服务器URI: ")
calculator = Pyro4.Proxy(uri)
print(calculator.add(5, 7))
pip install pyspark
from pyspark import SparkContext
sc = SparkContext("local", "WordCount")
text_file = sc.textFile("hdfs://.../input.txt")
counts = text_file.flatMap(lambda line: line.split(" ")) \
.map(lambda word: (word, 1)) \
.reduceByKey(lambda a, b: a + b)
counts.saveAsTextFile("hdfs://.../output")
使用Docker和Kubernetes部署分布式Python应用:
apiVersion: apps/v1
kind: Deployment
metadata:
name: worker
spec:
replicas: 4
selector:
matchLabels:
app: worker
template:
metadata:
labels:
app: worker
spec:
containers:
- name: worker
image: my-python-worker:latest
command: ["python", "worker.py"]
以上方法可根据具体需求组合使用,构建高效的分布式计算解决方案。